Modelling water spray – From laboratory scale up to fire safety application –

E. Blanchard, P. Boulet, P. Carlotti, A. Collin, A. Jenft, S. Lechêne

CSTB / LEMTA Nancy Université/ CNPP

Elizabeth.MF.Blanchard@gmail.com
1 Context and Objectives

2 Practical problems: tunnel configuration

3 More fundamental problems

4 Conclusion and future works
1 Context and Objectives

2 Practical problems: tunnel configuration

3 More fundamental problems

4 Conclusion and future works
Context and Objectives

Practical problems : tunnel configuration

Description of the test campaign

Studied tests

Test 27: 6 nozzles

Review

More fundamental problems

Droplet evaporation

Radiative attenuation

Conclusion and future works

Context

<table>
<thead>
<tr>
<th>Year</th>
<th>Tunnel</th>
<th>Duration</th>
<th>Consequences for people</th>
<th>Consequences for structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>Mont Blanc tunnel (France/Italy)</td>
<td>53 h</td>
<td>39 deads</td>
<td>closed for three years</td>
</tr>
<tr>
<td>1999</td>
<td>Tauern tunnel (Austria)</td>
<td>13 h</td>
<td>12 deads</td>
<td>closed for three months</td>
</tr>
<tr>
<td>2001</td>
<td>St. Gotthard (Switzerland)</td>
<td>2 days</td>
<td>11 deads</td>
<td>closed for two months</td>
</tr>
<tr>
<td>2005</td>
<td>Fréjus (France/Italy)</td>
<td>-</td>
<td>2 deads, 21 injured</td>
<td>10 km of equipment to be repaired</td>
</tr>
</tbody>
</table>

[Lönnermark, 2005]

Characteristics of tunnel fires:

- Geometry, confined configuration
- Tunnel ventilation
- Potential Heat Release Rate

Requirements for road tunnels have significantly evolved

 Authorities and operators are still looking for new ways/systems for ensuring a higher safety level
Context and Objectives

Practical problems: tunnel configuration

Description of the test campaign

Studied tests
Test 27: 6 nozzles

Review

More fundamental problems
Droplet evaporation
Radiative attenuation

Conclusion and future works

Water mist (NFPA 750, XP CEN/TS 14972)

Fine water sprays in which 99 % of the volume of the spray is in drops with diameters less than 1000 µm

Involved phenomena:
- Gas and surface cooling
- Radiative attenuation
- Oxygen dilution
- Interaction with smoke

Design must be assessed on the only basis of real scale tests

→ Very useful by involving real fire load and fluid flow

→ BUT expensive, difficult to conduct and difficult to analyze
Objectives:

- Improve our understanding and quantify the involved phenomena
- Evaluate the capability of computational tools
- Determine their potential contribution to assessment

The study makes an **extensive use of the code FDS**:

- It is free and open source
- It is widely used by scientists in the field of fire science
- A water spray model was already included

FDS Technical reference guide

FDS has been aimed at solving **practical fire problems in fire protection engineering**, while at the same time providing a tool to study fundamental fire dynamics and combustion.
1 Context and Objectives

2 Practical problems : tunnel configuration
 - Description of the test campaign
 - Studied tests
 - Test 27 : 6 nozzles
 - Review

3 More fundamental problems

4 Conclusion and future works
Model tunnel (1/3)
Length : 43 m
Cross section : 4 m²
Measurements :
- HRR : O₂ and MLR
gas temperature
gas velocity
radiative heat flux

Water mist system :
- Operating pressure : 90 bars
- Five-orifice spray nozzle
- Mist discharge rate : 5.5 l/min/nozzle
- Size distribution : hybrid law, \(d_m=40 \, \mu m\) & \(\delta=2.85\)
Studied tests and approach

Tests without water mist

<table>
<thead>
<tr>
<th>Test</th>
<th>Ventilation regime</th>
<th>Nozzle locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sub-critical</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>sub-critical</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>supercritical</td>
<td></td>
</tr>
</tbody>
</table>

Tests with water mist

<table>
<thead>
<tr>
<th>Test</th>
<th>Ventilation regime</th>
<th>Nozzle locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>supercritical</td>
<td>3 nozzles upstream and 3 nozzles downstream</td>
</tr>
<tr>
<td>28</td>
<td>supercritical</td>
<td>3 nozzles upstream</td>
</tr>
</tbody>
</table>
Studied tests and approach

<table>
<thead>
<tr>
<th>Test</th>
<th>Ventilation regime</th>
<th>Nozzle locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tests without water mist</td>
</tr>
<tr>
<td>1</td>
<td>sub-critical</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>sub-critical</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>supercritical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tests with water mist</td>
</tr>
<tr>
<td>27</td>
<td>supercritical</td>
<td>3 nozzles upstream and 3 nozzles downstream</td>
</tr>
<tr>
<td>28</td>
<td>supercritical</td>
<td>3 nozzles upstream</td>
</tr>
</tbody>
</table>

Diagram:

- **Ventilation regime:**
 - Sub-critical
 - Supercritical
- **Nozzle locations:**
 - 3 nozzles upstream and 3 nozzles downstream
 - 3 nozzles upstream

Diagram Details:

- **Fire section:** 17.5 m
- **Heptane pool:**
- **Air flow direction:**
 - T-9
 - T-3
 - T+4
 - T+8
 - T+12
 - T+24
- **Ventilation system:**
 - FM-7
 - FM+7
 - V-5
 - V+18
 - Compo+22
Tested tests and approach

<table>
<thead>
<tr>
<th>Test</th>
<th>Ventilation regime</th>
<th>Nozzle locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tests without water mist</td>
</tr>
<tr>
<td>1</td>
<td>sub-critical</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>sub-critical</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>supercritical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tests with water mist</td>
</tr>
<tr>
<td>27</td>
<td>supercritical</td>
<td>3 nozzles upstream and 3 nozzles downstream</td>
</tr>
<tr>
<td>28</td>
<td>supercritical</td>
<td>3 nozzles upstream</td>
</tr>
</tbody>
</table>

Model tests
- Repeatability evaluation

Estimation of the measurement uncertainty

Validation
- Sensitivity analysis

Extensive use of the code
- Quantification of the phenomena

PhD study R. Meyrand (PPRIME/CSTB) 2005-2009

Experimental stage | **Computational stage**
Studied tests and approach

<table>
<thead>
<tr>
<th>Test</th>
<th>Ventilation regime</th>
<th>Nozzle locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tests without water mist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>sub-critical</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>sub-critical</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>supercritical</td>
<td></td>
</tr>
<tr>
<td>Tests with water mist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>supercritical</td>
<td>3 nozzles upstream and 3 nozzles downstream</td>
</tr>
<tr>
<td>28</td>
<td>supercritical</td>
<td>3 nozzles upstream</td>
</tr>
</tbody>
</table>

Model tests
- Repeatability evaluation
- Estimation of the measurement uncertainty

Validation
- Sensitivity analysis

Extensive use of the code
- Quantification of the phenomena

Experimental stage

Computational stage

PhD study R. Meyrand (PPRIME/CSTB) 2005-2009
Simulations of the tests with water mist

Input data:
- dimensions of the test tunnel, wall thermal characteristics
- exhaust gas volume flow at the downstream side
- operating conditions of the water mist system
- heptane combustion reaction, HRR versus time
Test 27: 3 upstream and 3 downstream

Validation

Context and Objectives

Practical problems: tunnel configuration

Description of the test campaign

Studied tests

Test 27: 6 nozzles

Review

More fundamental problems

Droplet evaporation

Radiative attenuation

Conclusion and future works

FDS 5.4.0
Test 27 : 3 upstream and 3 downstream

Validation

Context and Objectives

Practical problems: tunnel configuration

Description of the test campaign

Studied tests

Test 27: 6 nozzles

More fundamental problems

Droplet evaporation

Radiative attenuation

Conclusion and future works

FDS 5.4.0
Test 27: 3 upstream and 3 downstream

Validation

FDS 5.4.0
Test 27: 3 upstream and 3 downstream

Validation

Context and Objectives

Practical problems: tunnel configuration

Description of the test campaign

Studied tests

Test 27: 6 nozzles

Review

More fundamental problems

Droplet evaporation

Radiative attenuation

Conclusion and future works

Water mist activation

Time (s) Temperature (°C)

0 60 120 180 240 300 360 420 480 540 600

0 100 200 300 400

1.7 m - Experiment - Simulation
1.5 m - Experiment - Simulation
1.0 m - Experiment - Simulation
0.3 m - Experiment - Simulation

FDS 5.4.0
Context and Objectives

Practical problems: tunnel configuration
Description of the test campaign
Studied tests
Test 27: 6 nozzles

More fundamental problems
Droplet evaporation
Radiative attenuation

Conclusion and future works

Test 27: 3 upstream and 3 downstream

Validation

FDS 5.4.0
Test 27: 3 upstream and 3 downstream

Validation

Context and Objectives

Practical problems: tunnel configuration

Description of the test campaign

Studied tests

Test 27: 6 nozzles

More fundamental problems

Droplet evaporation

Radiative attenuation

Conclusion and future works

FDS 5.4.0
Test 27: 3 upstream and 3 downstream validation

Context and Objectives

Practical problems: tunnel configuration

Description of the test campaign

Studied tests

Test 27: 6 nozzles

Review

More fundamental problems

Droplet evaporation

Radiative attenuation

Conclusion and future works

Water mist activation

Heat flux (kW/m²) vs Time (s)

FDS 5.4.0
Studied tests and approach

<table>
<thead>
<tr>
<th>Test</th>
<th>Ventilation regime</th>
<th>Nozzle locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tests without water mist</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>sub-critical</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>sub-critical</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>supercritical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tests with water mist</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>supercritical</td>
<td>3 nozzles upstream and 3 nozzles downstream</td>
</tr>
<tr>
<td>28</td>
<td>supercritical</td>
<td>3 nozzles upstream</td>
</tr>
</tbody>
</table>

Model tests
- Repeatability evaluation

Estimation of the measurement uncertainty

Validation
- Sensitivity analysis

Extensive use of the code
- Quantification of the phenomena

PhD study R. Meyrand
- (PPRIME/CSTB) 2005-2009

Experimental stage

Computational stage
Test 27 : 3 upstream and 3 downstream
Extensive use : Stratification?

At the HRR peak

Temperature (°C)

Height (m)

0 50 100 150 200
0
0.5
1
1.5
2
At 540 s - 8 m downstream
- 12 m downstream
Test 27 : 3 upstream and 3 downstream
Extensive use : Stratification?

At the HRR peak

At 540 s - 8 m downstream
- 12 m downstream

Oxygen concentration

Temperature (°C)

Height (m)

Oxygen volume fraction

Carbon monoxide concentration

Temperature (°C)

Height (m)

Carbon monoxide volume fraction

After 420 s, the environment is thermally stratified whereas $[O_2]$, $[CO_2]$ and $[CO]$ are almost constant along the vertical axis.
Test 27: 3 upstream and 3 downstream

Extensive use: Heat contribution of water mist

Roughly the half fire heat is absorbed by droplets

22 % of decrease of heat loss to surface induced by mist
Heat is absorbed by the liquid phase by:

- Gas cooling : 73%
- Radiative attenuation : 18%
- Surface cooling : 9%
Heat is absorbed by the liquid phase by:

- Gas cooling: 73%
- Radiative attenuation: 18%
- Surface cooling: 9%

By convection

By radiation
FDS Technical reference guide

FDS has been aimed at solving **practical fire problems** in fire protection engineering, while at the same time providing a tool to study fundamental fire dynamics and combustion.

- Comparison shows a good capability of the code to reproduce the tunnel fire environment with and without water mist.
- Gas cooling appears to be the main mechanism, followed by radiative attenuation.
FDS Technical reference guide

FDS has been aimed at solving practical fire problems in fire protection engineering, while at the same time providing a tool to study fundamental fire dynamics and combustion.

- Comparison shows a good capability of the code to reproduce the tunnel fire environment with and without water mist.
- Gas cooling appears to be the main mechanism, followed by radiative attenuation.

Is it capable to solve fundamental problems? In particular droplet evaporation and radiative attenuation.
1 Context and Objectives

2 Practical problems: tunnel configuration

3 More fundamental problems
 - Droplet evaporation
 - Radiative attenuation

4 Conclusion and future works
FDS - Version 5
Eulerian/Lagrangian approach
monodisperse/polydisperse spray

<table>
<thead>
<tr>
<th>Submodel</th>
<th>Type</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>verification</td>
<td>free fall of a single droplet</td>
</tr>
<tr>
<td>heat and mass transfer</td>
<td>verification</td>
<td>thermodynamic equilibrium</td>
</tr>
<tr>
<td></td>
<td>validation</td>
<td>evaporation rate of one single water droplet</td>
</tr>
<tr>
<td>Radiative model</td>
<td>verification</td>
<td>in a nonparticipating medium</td>
</tr>
<tr>
<td></td>
<td>verification & validation</td>
<td>in a participating medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>downward configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>upward configuration</td>
</tr>
</tbody>
</table>
FDS - Version 5
Eulerian/Lagrangian approach
monodisperse/polydisperse spray

<table>
<thead>
<tr>
<th>Submodel</th>
<th>Type</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>transport</td>
<td>verification</td>
<td>free fall of a single droplet</td>
</tr>
<tr>
<td>heat and mass</td>
<td>verification</td>
<td>thermodynamic equilibrium</td>
</tr>
<tr>
<td>transfer</td>
<td>validation</td>
<td>evaporation rate of one single water droplet</td>
</tr>
<tr>
<td>radiative model</td>
<td>verification</td>
<td>in a nonparticipating medium</td>
</tr>
<tr>
<td></td>
<td>validation &</td>
<td>in a participating medium</td>
</tr>
<tr>
<td></td>
<td>validation</td>
<td>downward configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>upward configuration</td>
</tr>
</tbody>
</table>
Evaporation
Model of heat and mass transfer

Context and Objectives

Practical problems: tunnel configuration
Description of the test campaign
Studied tests
Test 27: 6 nozzles
Review

More fundamental problems
Droplet evaporation
Radiative attenuation

Conclusion and future works

Current model:

\[
\frac{dm_p}{dt} = -Ah_m \rho \left(Y_p - Y_g \right)
\]

\[
m_p cp \frac{dT_p}{dt} = Ah \left(T_g - T_p \right) + \frac{dm_p}{dt} h_v + \dot{q}_r
\]

Model of Abramzon and Sirignano:

\[
\frac{dm_p}{dt} = -4\pi \rho D \cdot \frac{r_p Sh^*}{2} \cdot \ln \left(\frac{Y_v,g - 1}{Y_p - 1} \right)
\]

\[
m_p cp \frac{dT_p}{dt} = -m_p \overline{C_v} \cdot \frac{(T_g - T_p)}{B_T} + \frac{dm_p}{dt} h_v + \dot{q}_r
\]

Model of Taylor and Krishna:

\[
\frac{dm_p}{dt} = Ap p_0 \frac{W_p}{RT_f} \cdot \frac{ShD}{2 r_p} \ln \left(\frac{1 - Y_g W/W_p}{1 - X_p} \right)
\]

\[
m_p cp \frac{dT_p}{dt} = \frac{dm_p}{dt} h_v + Ap h^*_{p,g} (T_g - T_p) + \dot{q}_r
\]
Rate of evaporation of one single water droplet

[Ranz and Marshall, 1952] :
Droplet size : 1050 μm
Droplet temperature : 9.11 °C
Air temperature : 24.9 °C
Air velocity : 0 m/s
Relative humidity : 0 %

[Kincaid, 1989] :
Droplet size : [200, 1600 μm]
Droplet temperature : 12 °C
Air temperature : 22 °C
Air velocity : 0 m/s
Relative humidity : 31 %
Evaporation

Rate of evaporation of one single water droplet

[Ranz and Marshall, 1952]:
- Droplet size: 1050 µm
- Droplet temperature: 9.11 °C
- Air temperature: 24.9 °C
- Air velocity: 0 m/s
- Relative humidity: 0%

[Kincaid, 1989]:
- Droplet size: [200, 1600 µm]
- Droplet temperature: 12 °C
- Air temperature: 22 °C
- Air velocity: 0 m/s
- Relative humidity: 31%

Loss rate = \(- \frac{m_p(t_0) - m_p(t_0 + \Delta t)}{m_p(t_0) \cdot \Delta t}\)
Evaporation

Rate of evaporation of one single water droplet

[Ranz and Marshall, 1952]:
- Droplet size: 1050 µm
- Droplet temperature: 9.11 °C
- Air temperature: 24.9 °C
- Air velocity: 0 m/s
- Relative humidity: 0 %

[Kincaid, 1989]:
- Droplet size: [200, 1600 µm]
- Droplet temperature: 12 °C
- Air temperature: 22 °C
- Air velocity: 0 m/s
- Relative humidity: 31 %

Discrepancy with measurements:
- FDS: 22.7 %
- AS: 1.4 %
- TK: 20.0 %

FDS: 17.6 %
AS: 19.6 %
TK: 21.4 %
Radiative attenuation through a water spray:

\[
A_t = 1 - T_r = 1 - \frac{\text{Transmission with the spray on}}{\text{Transmission with the spray off}}
\]

Operating pressure: 4 bars

One-single-orifice spray nozzle

Solid elliptic spray patterns

Mist discharge rate: 0.32 l/min/nozzle

\[d_{32}(20 \text{ cm}) = 100 \ \mu \text{m}\]
Radiative attenuation through a water spray:

\[A_t = 1 - T_r = 1 - \frac{\text{Transmission with the spray on}}{\text{Transmission with the spray off}} \]

Operating pressure: 4 bars
One-single-orifice spray nozzle
Solid elliptic spray patterns
Mist discharge rate: 0.32 l/min/nozzle
d_{32}(20 \text{ cm})=100 \ \mu \text{m}

FDS version 5 underestimates the radiative attenuation
Discrepancy with measurements: 31 %
Discrepancy with BERGAMOTE: 42 %
Radiative attenuation through a water spray:

\[A_t = 1 - T_r = 1 - \frac{\text{Transmission with the spray on}}{\text{Transmission with the spray off}} \]

Operating pressure: 4 bars
One-single-orifice spray nozzle
Solid elliptic spray patterns
Mist discharge rate: 0.32 l/min/nozzle
\(d_{32}(20 \text{ cm}) = 100 \ \mu\text{m} \)

Theory

\[
\kappa_\lambda(s) = \frac{1}{\delta x \delta y \delta z} \int \int_{r=0}^{\infty} f(r, s) C_a(r, \lambda) dr d\lambda
\]

FDS 5

\[
\kappa_\lambda(s) = \frac{1}{\delta x \delta y \delta z} \int \int_{r=0}^{\infty} f(r, d_m(s)) C_a(r, \lambda) dr d\lambda
\]

Proposed modification

\[
\kappa_\lambda(s) = \frac{1}{\delta x \delta y \delta z} \int C_a(r_{32}, \lambda) d\lambda
\]
Radiative attenuation through a water spray:

\[A_t = 1 - T_r = 1 - \frac{\text{Transmission with the spray on}}{\text{Transmission with the spray off}} \]

Operating pressure: 4 bars
One-single-orifice spray nozzle
Solid elliptic spray patterns
Mist discharge rate: 0.32 l/min/nozzle
d\(_{32}\)(20 cm) = 100 \(\mu\)m

The modification leads to an improvement in predictions
Discrepancy with measurements: 11 %
Discrepancy with BERGAMOTE: 7 %
Context and Objectives

Practical problems: tunnel configuration
- Description of the test campaign
- Studied tests
- Test 27: 6 nozzles
- Review

More fundamental problems
- Droplet evaporation
- Radiative attenuation

Conclusion and future works
Conclusion

Study on tunnel fire tests

- Good capability of the code for predicting the thermal environment (temperature and heat flux) and the gas flow
- Some discrepancies in critical conditions
- Strong duality between thermal and toxic environment
- Heat absorbed by mist represents around 1/2 of HRR
- Heat is mainly absorbed by mist from gaseous phase
- The use of computational tools appears as an interesting complement to experimentation

Study on more fundamental problems

Current version 5

- Evaporation of one single droplet with a mean discrepancy of 18.0 %
- Attenuations through water curtain with a discrepancy close to 30 %

Some modifications have been proposed

- One in the radiative model has been accepted and integrated in the next version 6
- Others in the heat and mass transfer model are still under study
Future works

- Modify the structure of the heat and mass transfer
- Pursue the assessment of evaporation model
- Assess the model of heat transfer to surface

- Study the visibility both with and without water mist

- Study the influence of water mist on fire activity and combustion reaction