

INSTITUTE FOR APPLIED FIRE SAFETY RESEARCH

Protection of Tunnels with Water Mist Systems

Stefan Kratzmeir Managing Director

Agenda

 Fire suppression Systems in Tunnels -Principles

SOLIT² Full Scale Fire Tests

Compensation with Water Mist Systems

Case Study: New Tyne Crossing

Fire Development

- Fires in tunnels and underground stations can develop much fast than expected in the past.
- People do often not react as they are intended to do.
- Rescue services can not be considered as a support for people inside the tunnel (time!)
- Smoke caused the majority of fatalities in tunnel fires
- Time for fire fighters approach is significantly increased due to reduced visibility, temperature and radiation.
- Most larger tunnel fires are ventilation controlled fires.

Why Fixed Fire Fighting Systems

- Two major "enemies":A. HGVs
 - Real fires and research programs have shown the severity of fires when HGVs are involved.
 - Design HRRs have changed from 30MW to 100+MW within a decade

B. Time

- Fires can develop extremely fast

Design Fires for Tunnels

Notice! NFPA502 Edition 2008 has already increased fire sizes acco

Vehicles	Peak Fire Heat–Release Rates (MW)
Passenger car	5–10
Multiple passenger cars (2–4 vehicles)	10–20
Bus	20-30
Heavy goods truck	70-200
Tanker*	200-300

Aims of FFFS in Tunnels

Fire Suppression / Fire Fighting

Protection of fire spread

- Facilitate the approach of rescue services
- Increase the life safety for tunnel users

- Improving performance of ventilation systems
- Protection of tunnel structure
- Compensation of other safety measures within an integrated approach

Effect of Water Mist for Tunnel Fires

- Cooling Effect
 - Small droplets are converted into steam
 - Enormous and rapid cooling
- Reduction of Radiant Heat
- Oxygene Depletion
 - Limited effect due to forced ventilation
 - Only necessary for fires with burnable liquids

FFFS Technologies for Tunnels

- Deluge
 - $6 12 \text{ l/m}^2/\text{min.}$
 - Droplets above 1-2 mm
 - Used in Japan and Australia
 - No fire test above 30 MW known
- Foam (Premix or CAF)
 - Used in US
 - Some fire tests presented
- Water Mist
 - More than 100 full scale fire tests up to 200 MW
 - Used in France, UK, Spain, Italy, Russia
 - Approx. 20 % of water compared to Deluge

INSTITUTE FOR APPLIED FIRE SAFETY RESEARCH

SOLIT² Fire Tests

SOLIT² - Research Project

Compensation of safety measures by FFFS Integration of FFFS into a holistic tunnel safety system

- Run time: 10/2010 02/2012
- Supported by the German ministry of economy and technology
- Budget: ~ 4 Mio €
- Large scale fire test program in 2011
- Workshop/Conference in 2011
- Scientific advisory board

Information at www.solit.info

SOLIT² - Partners

Engineering, Simulation, Compensation
Engineering, Simulation, Literature
Economical Evaluation, Integration
Integration, Reliability, Guidance

Full Scale Fire Tests

Measurments, Data evaluation

SOLIT² - Major Work Program

- State of the art analysis
- Potential of Compensation
- Simulation
- Base data for risk analysis
- Effects of FFFS
- Economical Evaluation (LCC)
- Integration and Engineering
 Guidance

TEST SITE

San Pedro des Anes

Next City: Oviedo; Gijon

Airport: Asturias (OVD)

Length: 600 m

Full Scale Fire Test Program

- HGV Fire tests with Longitudinal and Semitransversal Ventilation
- 30, 50 and 100 MW Pool Fire tests with various ventilation conditions
- Study of the influence of FFFS on ventilation and vice versa

Full Scale Fire Test Program

- Interaction with the Fire Brigades Approach
- Cooperation with the Hamburg and Elbtunnel Fire Brigade
- Workshop with life fire test in the tunnel

15/11/2011

16

SOLIT² Class B Fires

- Class B fires with 30, 60 and 100 MW
- Diesel
- Fires were extinguished

SOLIT² Class A Fires

- Potential fire load up to 180 MW
- Covered and uncovered
- Target objects at downstream

Compensatory Effects

Compensation means to achieve the same level of safety by other measures.

Compensation requires a proof of equal level of safety

Compensation requires equal reliability

Compensation should be based on LCC evaluation

Compensation requires a holistic performance based tunnel safety concept

Challenges during the design

- Design fires for tunnel safety systems are usually increased to 100 MW (at least)
- New design fires and other data for upgrade and new projects
- Space & Power
- Costs
- Design

Future: Combination of FFFS and Ventilation

- For FFFS water mist systems are considered
- HRR will be limited by FFFS
- Smoke production rate will be limited
- Cooling effect will reduce the smoke volume
- Further effects for people, fire brigade and structures

Wirkungsweise: Sichtweite

- Still good visibilty through water mist
- Increased capacity of the smoke extraction or longitudinal ventilation by 70%.
- Further infos: www.solit.info

Rescue Services

- Reality: Fire brigades need up to 30 minutes to reach the place of incident!
- Fire spread (even for Class B truck fires) can be observed within
- Rescues services can not be consideres as assistance for the self rescue procedures.
- Timing problem is often ignored and unsolved.
- Some tunnels operate their own fire brigades (such as Elbtunnel (Hamburg), MontBlanc). Costs per year and fire fighter: not less than 200.000 €/man)

Infrastructure

- Area of high temperatures is limited
- Time of temperature is limitied
- Absolut temperature is limited

Reliability + LCC

- Compensation requires a proof of a equal level of safety
- This includes a similar reliability of the systems (eg. MTBF)
- Holistic tunnel safety concepts require also RAMS
 (Reliability, Availability, Maintainability and Safety) and LCC (Life Cycle Costs) analyses.
- Hardly used for conventional fire protection systems
- Common usage e.g. for rolling stock, cars, planes, etc.

E.g.: Decision to install a FFFS into New Tyne Crossing was fully based on a economic base.

SOLIT² Workshop

Pre-Announcement:

2nd Conference on Fire Suppression in Tunnels

- Fire Suppression Systems in Tunnels
- Compensation of Safety Measures
- Integration of FFFS

19.06. - 20.06.2012 in BERLIN

More informations within the next weeks at www.solit.info

Or send a short email to contact@solit.info

INSTITUTE FOR APPLIED FIRE SAFETY RESEARCH

Case Study: New Tyne Crossing

Tyne tunnels - Design

- Section length: 25 meters
- Number of sections: 60 (new) +
 68 (existing)
- Activation: 3 sections simultaneously
- Total pump capacity: 3250l/min
- Maximum pressure: 140bar
- Design basis: SOLIT fire tests
- Engineering basis: UPTUN
 Enginee-ring guideline Report
 R251

Tyne tunnels - Design

Tyne tunnels - Design

- Mechanical and hydraulical design:
 - Main pipes DN50 and DN100
 - Section pipes (primary) DN17
 - Minimum pipe quality: AISI316 (lifetime / standards)
 - Pipe connections mainly in welding (lifetime / standards)
 - Main aspects:
 - Proper hydraulic design (worst case scenario)
 - High level of <u>prefabrication</u> (detailed design)
 - Quality control
 - Testing

Pump station

- Jockey pump unit with self-cleaning filter for the pre-pressure of wet main pipes
- Booster pump unit (redundant pumps) with main filter
- HP pump sets
 - Each set 600l/min@140bar
 - Follows UPTUN R251 Engineering guidance:
 - Direct coupling, one motor per pump, all pumps have individual safety valve, etc.
- Pump control cabinet
 - Many service / monitoring functions of critical components

Pump room

Thank you for your kind attention!

Further information: Stefan Kratzmeir

Kratzmeir@ifab-fire.com

Consulting – Testing - Training www.ifab-fire.com