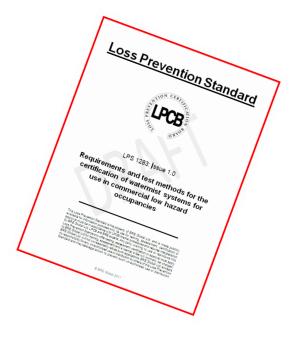

Protecting People, Property and the Planet

Watermist Systems for Building Fire Protection


Louise Jackman LPCB 9 November 2011

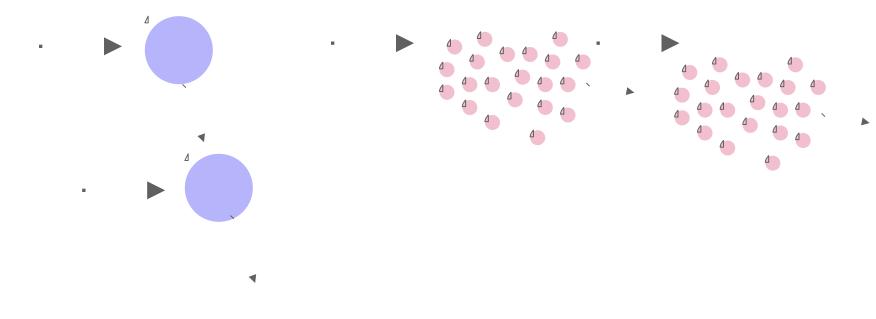
Introduction

- 1. Watermist properties
- 2. BRE Trust research project
 - Parameter testing
- 3. BRE Trust research project
 - Office testing
- 4. BSI Draft for Development standards
- 5. Summary

Protecting People, Property and the Planet

bre

Watermist parameters


- One sprinkler droplet is equivalent to thousand(s) of smaller watermist droplets
- Increased heat transfer
 - Increased surface area = increased rate of heat removal

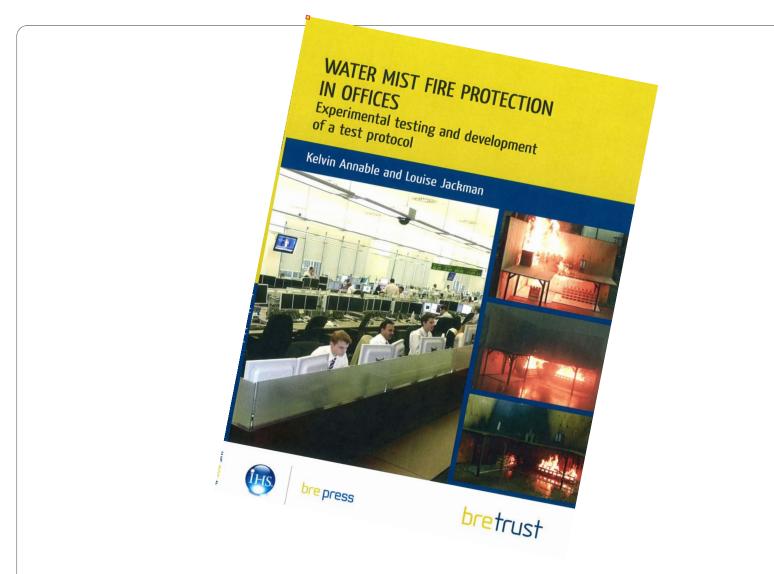
- Increased mass transfer
 - Increased surface area = increased rate of evaporation

Watermist parameters

- Momentum
- Longer fall time for small droplets
 - large droplet = 4m per s, small droplet =1cm per s
- Increased transit time in fire/smoke/airflow for small droplets

Water spray envelope

Suppression mechanisms


- Droplets remove heat from fire and smoke (conduction, convection, radiation)
- Droplets spray/fall and wet fuel (inhibiting fire spread)
- Water vapour displaces oxygen (near flame)
- In a compartment, droplets and water vapour filling, can inhibit fire spread
- In open/obstructed space, droplets and water vapour can be pushed away

Protecting People, Property and the Planet


BRE Trust Research Project Parameter testing

bre

Test set-up

- Watermist system
 - Low pressure(& high pressure)
 - Single nozzle
 (& four nozzle)
- Large laboratory
 - Open ceiling
 - Compartment (3.7m x3.7m x2.5m)

Test set-up

- Wood crib (free burn)
 - Horizontal spread
 4 min, 12 min
 17 min, 19 min
 - 500 kW peak

For watermist tests

- Pre-burn(9 min)
- Water delivery (10 min)

Parameters studied

- Nozzle spacing
- Nozzle flow and pressure
- Compartmentation
- Ventilation
- Ceiling height
- Fire hazard (fuel, arrangement, **obstructions**)

Nozzle spacing tests, no compartment

- Fire beneath nozzle
 - Good suppression
 - 20°C above crib @3min
- Fire 1.25 m offset from nozzle
 - Control, less suppression
 - 350°C above crib @3min

- No control
- 850°C above crib @3min

Nozzle in compartment, open door

- Fire 1.8m offset from nozzle
 - Control
 - 400°C above crib @9min
 - 120°C at ceiling

Nozzle in compartment, open door

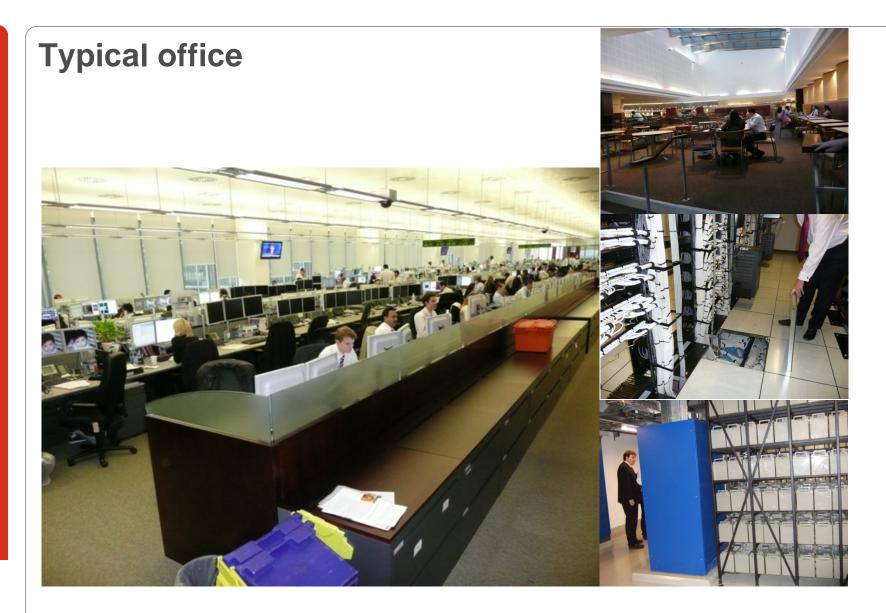
- Obstructed fire beneath nozzle
 - No control
 - 850°C above crib @3min
 - 40°C at ceiling

Ventilation, in open

- Five tested ventilation scenarios
 - No control
 - 400 700°C above crib@3min

Ventilation, in compartment 1.8m offset

- Open door
 - Control, 170°C above crib
 - 70°C at ceiling
- Wall vent, low pressure mist
 - Control, 200°C above crib
 - 60°C at ceiling
- Wall vent, high pressure mist
 - No control, 900°C above crib
 - 80°C at ceiling


Critical parameters for fire testing of watermist

- Nozzle spacing
- Nozzle flow and pressure
- Ceiling height
- Compartmentation
- Ventilation
- Fire hazard (fuel, arrangement, obstructions)

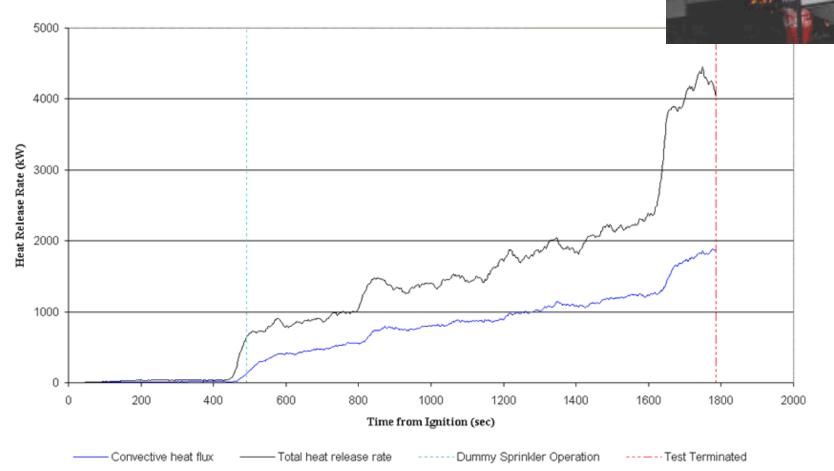
Protecting People, Property and the Planet

BRE Trust Research Project Office testing

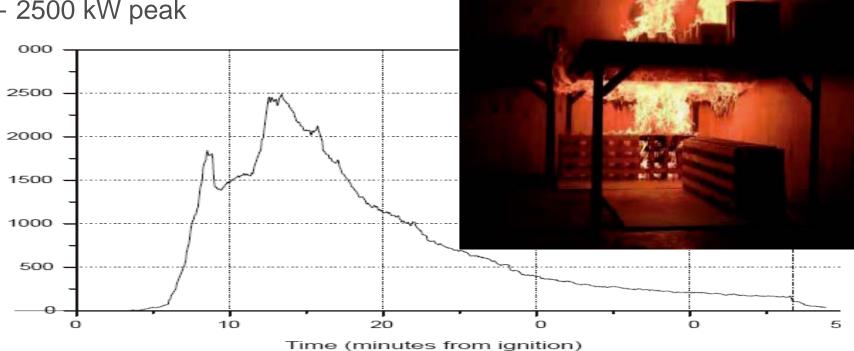
bre

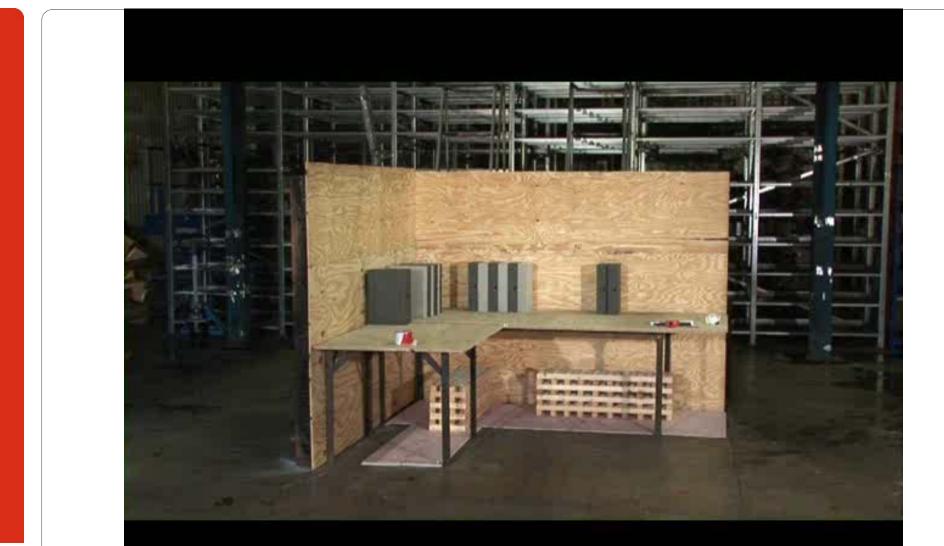
Base information

- Fire load surveys
- Fire engineering design fires
- Standard test fires


IMO A800, SP REPORT 2003:01

Design Fire Database


Open Plan Office Unsprinklered Heat Release Rate



Office fire test protocol

- Stylised, repeatable fire
- Progressive spread
- Medium growth
- 2500 kW peak

Findings – sprinkler (SP1)

- K80 pendent sprinklers
- 10.5 m² spacing (5 mm/min)
- Ignition centre of 4 nozzles

- Suppression

- -5 mins after activation
 - 40°C at 2.5m
 - 40°C at 5m (ceiling)
- Damage
 - no spread to edge
 - plywood in tact

Findings – watermist (SP3)

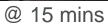
- Low pressure
- 6.25 m² spacing (5 mm/min)
- Ignition centre of 4 nozzles
- Suppression
- -5 mins after activation
 - 20°C at 2.5m
 - 20°C at 5m (ceiling)
- Damage
 - no spread to edge
 - plywood in tact

Findings – watermist (SP2)

- Low pressure
- -9 m² spacing (3.5 mm/min)
- Ignition centre of 4 nozzles
- Control(?) not suppression
- -5 mins after activation
 - 300°C at 2.5m
 - 100°C at 5m (ceiling)
- Damage
 - spread to edge
 - plywood not in tact

Findings – watermist (SP6)

- High pressure
- -9 m² spacing (2.8 mm/min)
- Ignition centre of 4 nozzles
 - 30 s delay
- No control
- -5 mins after activation
 - 300°C at 2.5m
 - 90°C at 5m (ceiling)
- Damage
 - spread to edge
 - plywood not in tact



@ 5 mins

Summary

For an office fire load (OH1)

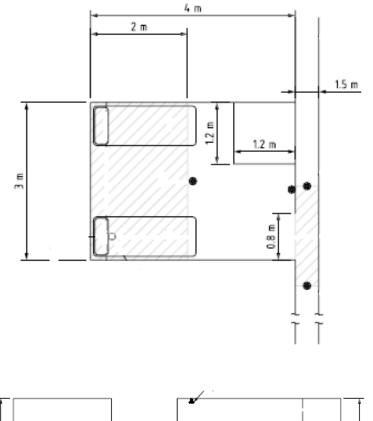
- large open space in a building
- 5 m ceiling
- Of the tested arrangements
 - only one watermist system resulted in suppression
 - with sprinkler equivalent delivered density (5 mm/min)
 - Other tested arrangements failed to suppress the fire
- Nozzles spacing and flow rate are critical
- Other arrangements may perform better
 - lower ceilings
 - lower fire loads
 - in a compartments

Protecting People, Property and the Planet

BSI Draft for Development standards

Background

- Fire test protocol based on
 - FM 5560
 - IMO A.800
 - BRE Trust research, FB34
- With additional consideration for:
 - Fire load, material & arrangments



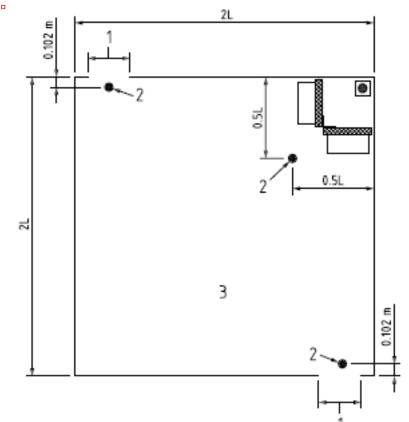
Protecting People, Property and the Planet

DD 8489-7 Small compartment, bunk beds Test arrangements

- 4 m by 3 m by 2.4 m high
- One open doorway
- One nozzle (centre or sidewall)
- Two 'dummy' nozzles near open doorway outside room
- Untreated plywood wall lining (3/4 mm)
- Three polyether non FR-treated foam sheets + pillow (cotton cover)
- Insulated fibreboard soaked in heptane

3 m

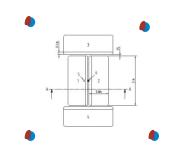
11

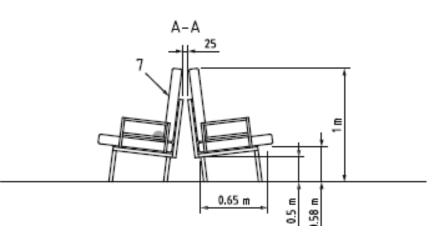

1.5 m

Protecting People, Property and the Planet

DD 8489-7 large compartment, furniture Test arrangements

- 2L m by 2L m by 2.4 m high
- L = nozzle spacing (e.g. 3 m)
- Two open doorways
- Four nozzles
- Two 'dummy' nozzles near open doorway inside room
- Untreated plywood wall lining (6mm)
- Two polyether non FR-treated foam
- A wood crib, eight layers of wood sticks on top of a heptane tray
- Cotton wicks soaked in heptane

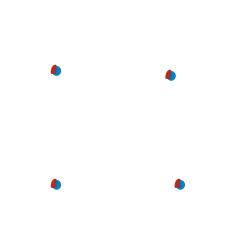



Protecting People, Property and the Planet

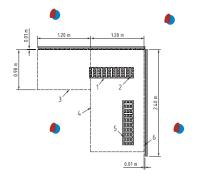
DD 8489-7 open space sofas Test arrangements

- 3L m by 3L m by up to 5 m high
 - L = nozzle spacing (e.g. 3 m)
- Open on all sides, no wall lining
- Four nozzles
- Three polyether non FR-treated foam sheets + pillow (cotton cover)
- Insulated fibreboard soaked in heptane

Protecting People, Property and the Planet


DD 8489-7 simulated work station Test arrangements

- 6 m by 6 m by up to 5 m high
- Open on all sides, no wall lining
- Four nozzles
- Untreated plywood wall lining (6mm)
- Two wood cribs
- Chipboard table + indicatives



DD 8489-7 simulated work station Three tests

- Under one nozzle
- Between two nozzles
- Between four nozzles

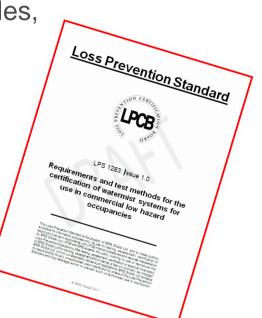
DD 8489-7 simulated work station Acceptance criteria

- Control test fire for 30 min
- Acceptance criteria are:

Plywood damage	Not extended to wall ends No areas burnt through or fallen away
Box and foam damage	Limited, some unburnt
Ceiling gas temperature , in	≤ 80°C

centre of ceiling

- Mean temperatures remain steady or decreasing after 5 mins



Key facts

- Watermist is a complex technology
 - Increased efficiency
 - Increased vulnerability
- No generic system design methodology, all systems are bespoke
- There are critical watermist parameters, e.g. Nozzle spacing and flow
- There are critical fire / room parameters
 - Fire (spread, duration, obstructions)
 - Compartmentation
 - Ventilation

Watermist for building fire protection

- Watermist systems can be used to protect low hazard occupancies
- Watermist systems have limits
 - Application fire load
 - Fire load, fire growth rate, height of combustibles, obstructed fire load
 - Application arrangements
 - Floor area, ceiling height
 - Ventilation
 - Watermist systems require precise specification
 - Components
 - Design parameters

Testing watermist systems against standards is essential

- To obtain fire performance test results for
 - Specified system design
 - Particular hazard type
 - Against an agreed standard
- To provide benchmarking
- To provide confidence in a system for:
 - Customers
 - Specifiers
 - Enforcers
 - Approval bodies

Thank you

Louise Jackman LPCB 01923 664948 Jackmanl@bre.co.uk

Watermist office test demo http://www.youtube.com/user/BREVideoUK#p/u/11/ kq8N-9TaoZc