Fire 'Resistance' Testing

Where are we, how did we get here & where are we going?

Prof Luke Bisby Arup Chair of Fire & Structures University of Edinburgh

ARUP

Maintain stability & prevent the spread of fire for a reasonable period...

Do we have the data we need? What ARE the data we need?

Fire 'Resistance' Testing

Stewart & Woolson (1902)

Bisby (2003)

1974 – Lame Substitutions*

Structural Fire Engineering

FIRE

STRUCTURE

HEAT TRANSFER

*a term coined by Dr Guillermo Rein, Imperial College

Lame Substitution 1 – By Fire Engineers

Lame Substitution 2 – By "Structural" Engineers

Lame Substitution 3 – Status Quo 1974

Structural Fire Engineering?!

May 2014

Structural Journal of the American Concrete Institute Cover Photo!

1974-2014

Mapping change in structural fire resistance testing (& analysis) through key events & the work of (some of) Edinburgh's graduates

Centre Georges Pompidou (Law 1977)

Explicit recognition that the 'standard' fire may not be applicable

The Renaissance – NIST (1982)

Explicit recognition of the **significance of full-structure response** to fire – Need for **experimental data for finite element model validation**

Broadgate Phase 8 (1990)

Demonstrated ability of **unprotected steelwork** to resist a severe fire in a real building

Lane (1997)

The Response of **Steel Frame Structures** under Fire Conditions

The 1st structural fire engineering experiments at Edinburgh

NOTE: Pre-Cardington!

Cardington Fire Tests (1995/96)

Gillie ('00), Lamont ('01), Cameron ('03)

'To understand and **exploit the results of the fire tests at Cardington** so that **rational design guidance** can be developed for the fire limit state'

^{Lamont (2001)} Behaviour is radically different from the present design philosophy, a new philosophy is required based on **new definitions of the fire limit state**'

WTC 1, 2 & 7 (2001)

'The Terrorists did it'

Total collapse of three steel buildings due to fire

Flint ('05), Jowsey* ('06), Roben ('10)

The Result Where are we?

So it's all good news?

Where now?

Torre Windsor (2006)

Cardington Concrete Frame (2001)

The slab remained stable and supported the load 'by compressive membrane action at small slab vertical displacement'

Fletcher ('09), Law ('10), Deeny ('11)

Full-frame response and behaviour under travelling fires

Impacts of cover spalling on response of concrete buildings in fire

Gretzenbach (2004)

Rotterdam (2007)

Tunnel Fires ('94-'08)

A notable absence of high quality test data for the purposes of careful and detailed model validation

The Future?

Structural Fire Testing – Drivers?

Economic – Client saves money (e.g. on fire protection)

- 2. Architecture Enable interesting/unusual buildings (e.g. Pompidou, Heron Tower)
- 3. Innovation Ensure/demonstrate that new or evolving methods, materials, or designs are safe (e.g. CLT)
- **4. Sustainability?** Structural optimization removes inherent redundancies (e.g. post-tensioned flat slabs)
- 5. **Property Protection?** Reducing the direct/indirect costs of fire (who cares about the true cost of fire?)
- 6. Safety? Interrogate the building

Opportunity 1 – Real Fires

Buildings – Tunnels – Offshore & Petrochemical

Preventing the tail from wagging the dog

Opportunity 2 – **Real Material Response** Maluk (2014) – **H-TRIS**

A thermal/mechanical test method applicable to 'any' fire scenario

Fire-Induced Concrete Spalling

Maluk (2014)

Performance of Fire Protection Coatings

ARUP

Opportunity 3 – Structure-Fire Model Validation Fox (2013), Gales (2013)

Extremely careful control and measurement of **thermal and structural boundary conditions** in single element tests (validation data)

Gritzo (2014)

Small and Medium Scale Testing

Protection Concept

Photo courtesy Jiann Yang @ NIST

NIST's National Fire Research Laboratory Structure-Fire Model Validation

Opportunity 4 – Probabilistic Analysis

Lange (2009), Rush (2013)

The Challenge

Develop the **knowledge**, **tools**, **skills**, and **attitudes** to design and deliver a more beautiful, functional, economical, resilient, and sustainable built environment...

... whilst meeting society's **expected level of safety** and without squandering **scarce resources**

30 Story Timber?

Michael Green Associates

What data do we need? And why?