Wildland Fires

Where are we, how did we get here, and where are we going?

Albert Simeoni

The BRE Centre for Fire Safety Engineering

THE UNIVERSITY of EDINBURGH

40th Anniversary Symposium & Celebration 15-16 May 2014 Surgeons' Hall, Edinburgh

California (2007)

Scottish Highlands (2013)

Most expensive fires in US history (NFPA – adjusted loss in 2012 \$)

- 4. Oakland Fire Storm (WUI) Oakland, California, October 20, 1991\$2.5 billion
- The Southern California Firestorm, San Diego County, California, October 20, 2007 \$2.0 billion
- 8. "Cerro Grande" (WUI), Los Alamos, New Mexico, May 4, 2000\$1.3 billion
- 9. "Cedar" Wildland Fire, Julian, California, October 25, 2003\$1.3 billion
- 11. "Old" Wildland Fire, San Bernardino, California, October 25, 2003\$1.2 billion
- Black Saturday Fires, AU\$ 4.4 billion (including AU\$ 647 million for loss of lives)
- Greece Wildfires, 2007, \$7 billion

Money spent on fuel treatment in the US over the last 10 years: \$5.5 billion

40th Anniversary Symposium & Celebration 15-16 May 2014 Surgeons' Hall, Edinburgh

Australia, Black Saturday and following days (Victoria State, February 7 – March 14, 2009):

- 173 fatalities
- 450,000 ha burned
- 3,500 buildings destroyed
- Confirmed sources: cigarette butts, lightning, power lines, arson, machinery

Worst bushfireweather conditions ever recorded! Temperatures > 40°C Winds> 100 km/h

40th Anniversary Symposium & Celebration 15-16 May 2014 Surgeons' Hall, Edinburgh

Fire eruptions (*Fire Service of North Corsica*)

Crown fires (http://biologyprojectwiki.wikispaces.com)

Spot fires

Wildland Fires

(USDA)

(Wayne Hunnicut/Inciweb.org)

Massive fire plumes

40th Anniversary Symposium & Celebration 15-16 May 2014 Surgeons' Hall, Edinburgh

一般的 和 化 化

Peat fires around Moscow (August 6, 2010)

WV

What do we have?

- Risk indexes
 - Canada / US / Europe
 - Not doing a very good job for some extreme climatic events
- Fire Spread
 - Semi-empirical models: landscape scale
 - CFD models: landscape scale (LANL) and WUI scale (WFDS)
 - Not doing a very good job at quantifying
- Fire Safety
 - Empirical knowledge / analytical approaches
 - Standards/codes (NFPA, ICC, ASTM)
 - Best-practice FireWise (USA), FireSmart (Canada), FireSafe (California)
 - Not very strong scientific bases

Why is it so difficult?

The scientific community knows the Physical laws

GIS and weather models provide the Environmental data

Difficulty in modelling the huge variable variability (fuel gases ...)

Knowledge transfer to end-users does not always require fully solved problems

- Coupling between fire and topography (trench effect)?
- Wind effect?
- Smoke or gas accumulation?

Recent Forest Fire Related Accidents in Europe

EUR 24121 EN - 2009

40th Anniversary Symposium & Celebration 15-16 May 2014 Surgeons' Hall, Edinburgh

Peat Fires

Fire Spread and Fire Severity

May 15, 2014

- Experimental studies in the US (Show, 1919) later model development (Rothermel, 1972)
- Development of a research program in Canada (Wright, 1932)
- Fire Danger Meters in Australia (McArthur, 1966)
- Start of research programs in Europe (Thomas, 1971)
- Studies developed in USSR in parallel (Konev & Sukhinin, 1977)
- Forest services and public bodies drive the research in the US, Canada and Australia (university involvement is growing)
- Research mainly conducted in Universities in Europe and Russia

40th AnnivellsShøftyfinpusieum Æifee Behration Novemlbeit & May, 2010 Surgeoms 10 FILER, Gobubga

Empirical Modelling

ISI: Initial Spread Index (function of Moisture content of vegetation and wind)

a,b and c are fuel dependent (8 classes for Canadian ecosystems)

May 15, 2014

Empirical Modelling

 $FFDI = 2e^{-0.45 + 0.987 \ln(10A) - 0.0345H + 0.0338T + 0.0234W}$

- FFDI = Forest Fire Danger IndexA: Fuel Availability Index (0<A<1)H: Relative Air HumidityT: Temperature (Celsius)W: Wind speed
- FFDI calculated for different fuel moisture contents
- In use for 30 years (also Eucalyptus)
- Not applicable for other conditions

Semi-Empirical Modelling

- One dimensional
- Steady-state
- Based on a single energy balance

$$R = \frac{I_{xig}}{\rho_{be} Q_{ig}} dx$$

- Energy transmitted to the unburned fuel is proportional to the energy released by combustion
- No differentiation for heat transfers and heat production

40th Anniversary Symposium & Celebration 15-16 May 2014 Surgeons' Hall, Edinburgh

Physical Modelling (detailed)

- > For each phase
 - Mass balance
 - Chemical species balance
 - Momentum balance
 - Energy balance
- Interface relationships

Example – Interface equation for mass: $\begin{bmatrix} \dot{M} \end{bmatrix}_{gk} = \begin{bmatrix} \dot{M} \end{bmatrix}_{k}^{surf} + \begin{bmatrix} \dot{M} \end{bmatrix}_{k}^{pr}$

Example – Mass balance:

> Sub-modes

Example – Arrhenius type laws

≻ R.T.E.

 $\vec{e}.\vec{\nabla}\left(\alpha_{g}\left\langle L_{g}^{\Omega}\right\rangle\right) + \sum_{k}\sum_{p}\sum_{S_{pk}}gL_{g}^{\Omega}\vec{n}_{g}\vec{e}\,dS = -\alpha_{g}\left\langle a_{g}^{\Omega}L_{g}^{\Omega}\right\rangle + \alpha_{g}\left\langle a_{g}^{\Omega}L_{0}^{\Omega}\right\rangle$

May 15, 2014

$$\frac{\partial}{\partial t} \left(\alpha_{g} \left\langle \rho_{g} \right\rangle \right) + \vec{\nabla} \left(\alpha_{g} \left\langle \rho_{g} \vec{V}_{g} \right\rangle \right) = \sum_{k} \left[\dot{M} \right]_{gk}$$
$$\frac{\partial}{\partial t} \left(\alpha_{k} \left\langle \rho_{k} \right\rangle \right) = - \left[\dot{M} \right]_{k}^{surf} - \left[\dot{M} \right]_{k}^{pr}$$

Physical Modelling (detailed)

WFDS (NIST / USFS)

- Module in FDS
- Vegetation models
- Scale of the WUI

May 15, 2014

40th Anniversary Symposium & Celebration 15-16 May 2014 Surgeons' Hall, Edinburgh

Physical Modelling (simplified) $\frac{\partial T}{\partial t} + k_v \vec{V}_g \cdot \vec{\nabla} T = -k(T - T_a) + K \Delta T - Q \frac{\partial \sigma_k}{\partial t} + R$

Fire/Atmosphere Interactions

Some very strong needs if we want to achieve quantification

- Better understand the fire fundamentals
 - Combustion
 - Coupling fire / vegetation (solid / gas interaction, layers interaction...)
- Better understand the fire dynamics
 - General fire behavior
 - Interaction of the fire with the ambient (wind, atmosphere, vegetation heterogeneities)
 - Extreme phenomena
- Changing environment
 - California fires
 - Forest in Far East of Russia
 - Fires in Scandinavia
 - WUI

- Link with other research fields
 - Fire science!
 - Future and past fire regimes
 - Emissions (CO₂ and pollution)
 - Forest dynamics / Ecosystems
 - Socio-economic changes / Management

Where are we going?

Better understand the fundamentals

New design of fuel sample holders (porous beds)

Pinus halepensis 0% basket

Pinus pinaster 63% basket

Applied conditions:

- ➢ No flow (natural convection)
- Different levels of forced flow

Where are we going?

Ignition Behaviour

Simulations with FireFOAM

Decouple Fire / Structure

May 15, 2014

Where are we going?

Develop the models and build trust

• Drag forces – Single tree:

40th Anniversary Symposium & Celebration Where are we going? 15-16 May 2014 Temperature [°C] Surgeons' Hall, Edinburgh 0 60 0 90 10 t +12:56 [seconds]

- We need laboratory studies (including simulations) to understand the fundamentals and to develop and close the models
- We need reality checks in the field to feed more laboratory studies and to know the orders of magnitudes of the driving parameters
- We need validation studies to trust the models
- A big step would be to develop families of simplified physical models
- We always have to keep in mind that as engineers we must deliver

